
Journal of Applied Mechanics and Technical Physics, Vol. 37, No. 3, 1996 

LOSS OF  S T A B I L I T Y  OF  ON A T O M I C  C H A I N  R E G I O N  

IN T H E  P R E S E N C E  O F  I M P U R I T Y .  

S T R E N G T H  R E D U C T I O N  

OF C R A C K E D  B R I T T L E  SOLIDS 

V .  M .  K o r n e v  1 a n d  Y u .  V .  T i k h o m i r o v  2 UDC 539.375 

1. I n t r o d u c t i o n .  "The applied significance of fracture mechanics is due to the possibility (under 
various real conditions) of decreasing considerably the critical levels of stresses and fracture energy compared 
with those measured in standard-tests of material. This possibility arises under the action of defects and 
surface-active media" [1, p. 97]. Impurities are among to the most important and common defects of the 
crystal structure of actual solids [2, chaps. 5 and 8; 3]. "The available theories of solids can neither take 
into account nor explain many factors that are known to metallurgists as those determining the structure 
and various properties of solid solutions. Some factors such as, e.g., chemical affinity or the difference in 
atomic sizes, are considered only semiempirically" [2, p. 489]. In atomistic models of fracture, the influence 
of an impurity is considered semiempirically using the main factors (dimension or energy) that determine the 
behavior of impurities in solid solutions. The dimensional factor is given in the form 

6 = (rQ - rM)/rM, (1.1) 

where rM and rQ are the shortest interatomic spacings in the lattices of solvent M and dissolved element 
Q, respectively [2, p. 503]. For nonzero 6 at the atomic scale, the atoms of the solvent and the dissolved 
element are shifted from their mid-positions in the crystal lattice and thus are in an elastically stressed state 
of constant static shift [2, p. 500; 4]. Thus, the key parameter in the numerical experiments of [5, 6] is the 
difference in atomic size between the crystallite and the thin film (of one or a few atomic layers) that covers 
the crack surface. In addition, if the sizes of the film atoms are smaller than those of the crystallite, brittle 
fracture is observed throughout the plastic crystallite. The energy factor is ignored. 

This paper, using a one-dimensional atomic model as an example, shows the possibility of strength 
reduction of a solid whose atomic lattice contains impurities. Particular examples that have a physical meaning 
are given. In principle, the decrease in strength can reach one or two orders of magnitude and is determined by 
differences in atomic interaction. Under the model conditions, this decrease can be calculated from the given 
formulas using numerical values of the parameters of the known potential function of the interaction between 
the main and impurity atoms. In this case, allowance for both dimensional and energy factors is required. 

2. A t o m i c  M o d e l  of  B r i t t l e  F r a c t u r e  in t h e  P r e s e n c e  of I m p u r i t y .  The general statement of 
problem formulated in [7] remains unchanged. The triatomic chain studied is built into an infinite chain of 
fixed atoms, but one atom of the chain is considered an impurity atom (substitution atom). Accordingly, the 
interaction of this atom with its neighbors and, hence, the potential function parameters are char.ged. 

Triatomic chains with an impurity atom which is either central or at the end are considered. The 
equilibrium patterns and the relation ~ = P . / p .  between the critical values of the force P that extends a chain 
with an impurity atom and the critical value of the force p that extends an "ideal" chain are determined. This 
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relation depends on the difference in the atomic interaction parameters. In this case, both the dimensional 
and energy factors are taken into account. As an interatomic potential we take the Morse potential 

v(r )  = D(exp ( - 2 a ( r  - re)) - 2exp ( - a ( r  - r , ) ) ) .  (2.1) 

Since, in the general case, there are two sets of potential parameters D, a,  and re, the analysis can be 
simplified by assuming interaction only between the nearest neighbors. The impurity atom is denoted by Q 
and the other atoms are denoted by M. The M - Q  interaction is described by the Morse function 

VMQ(r) = D M Q ( e x p ( - - 2 a M Q ( r  -- rMq)) -- 2 e x p ( - - a M Q ( r  -- rMQ))) .  (2.2) 

For M - M  interaction, the previous notation of (2.1) without subscripts and superscripts is retained. We now 
consider a set of real positive dimensionless quantities: 

k = D M Q / D ;  (2.3) 

= O~MQ/O q (2.4) 

2 =  exp(  - (2 .5 )  

The first two quantities reflect the influence of the energy factor, and the latter reflects the influence of the 
dimensional factor under the assumption that this factor is determined by the difference in the parameters re 
and r MQ of potentials (2.1) and (2.2), respectively. 

We denote an arbitrary atom of the chain by 0. The remaining atoms are denoted by integers (Fig. 1). 
We assume that under extension atoms with subscripts . . . ,  - 3 ,  - 2 ,  - 1 ,  1, 2, 3, . . .  Mways occupy positions 
that correspond to the ideal structure of the extended chain, i.e., 

�9 .. = r-a,-2 = r-2,-1 = 0.5 r_ m = ri,2 = r2,3 . . . . .  (2.6) 

Let the chain be extended by a force P to the state in which the bond lengths in (2.6) are equal to a 
certain value d. We fix all atoms of the chain, except for the "zeroth" atom, in their "ideal" positions. In this 
case, the position of the "zeroth" atom is fully determined by one of the quantities r-l ,0 or r0,t, i.e., by the 
distances to its nearest neighbors (Fig. 1). We assume that the quantity r-l,0 is the determining one. Since 
r-1,1 = 2d, we have 

r0,1 = 2d - r-l,0. (2.7) 

Let us describe the behavior of the given "zeroth" atom as a function of both the degree of extension 
of the chain and the presence of an impurity. The degree of extension is defined by the parameter d, which 
is related to the deformation ~/of the atomic bond of the nearest neighbor by r 1 = (d - do)/do. We consider 
the case of interaction between the nearest neighbors only. Long-range action has been considered in [7]. By 
condition, relation (2.6) remains valid in the presence of an impurity, i.e., all atoms of the chain, except for the 
free atom, are fixed rigidly in accordance with the value of P (value of d), including the initial moment when 
P = 0. Thus, for a nonzero dimensional factor 6, the given triatomic part of the chain is in a stressed state of 
either compression or extension, and the atomic bonds in it are subject to deformation. This is in agreement 
with the above-mentioned influence of the dimensional factor. However, atomic relaxation is ignored. To take 
it into account, one must change accordingly the length of the triatomic chain compared with d. 

Let us introduce the dimensionless variables 

= exp ((~ (r-l ,0 - re)), p = exp (c~ (d - re)). (2.8) 

Note that ~ and p are always positive. Moreover, since extension is considered, we have r-l,0 >~ re and d >/re, 
and, hence, ~ >/ 1 and p >/ 1. Formulas (2.8) give a one-to-one correspondence between sets of the quantities 

and p or r-l ,0 and d, and the problem can be solved for the variables ~ and p. In this case, p determines 
chain extension, and ~, the position of atom 0. 

In [7], the force p that extends an "ideal" infinite chain is calculated by the formula p = p(p) = 
(2Dcr/p 2) (p - 1), and the critical force p, (for p = p, = 2), by the formula p, = p(p , )  = Do~/2, i.e., p, equals 
p,,, (the theoretical tensile strength of the atomic bond). 
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TABLE 1 

M Q 

Cu Gd 
Gd Cu 
A1 Gd 
Gd A1 
Fe A1 
Al Fe 
Cu Au 
Au Cu 
Ni Fe 
Fe Ni 

Ot 

1.355 
0.763 
1.052 
0.763 
1.358 
1.052 
1.283 
1.403 
1.366 
1.893 

OtMQ 

0.775 
0.775 
0.810 
0.810 
0.972 
0.972 
1.315 
1.315 
1.419 
1.419 

D 

0.338 
0.302 
0.274 
0.302 
0.418 
0.274 
0.579 
0.725 
0.754 
0.727 

DMQ 

0.310 
0.310 
0.339 
0.339 
0.373 
0.373 
0.623 
0.623 
0.645 
0.645 

~C 

2.871 
4.469 
3.400 
4.469 
2.871 
3.400 
2.811 
3.048 
2.720 
2.820 

4.058 
4.058 
4.097 
4.097 
3.378 
3.378 
2.937 
2.937 
2.755 
2.755 

Model conditions and the derivation of this formula by limit passage allow this formula to be applied 
to the impurity-containing chain. Hence, 

t =  P , /p ,  = 4(p,Q)-2(p, Q - 1), (2.9) 

where/", = p(p,Q); p,Q is the critical parameter of chain extension with an impurity. 
R e m a r k .  The discrete criterion of Novozhilov's brittle strength [8, 9] is directly related to the use of 

the estimated theoreticM strength of an atomic structure at the crack tip. The theoretical strength in the 
presence of impurity can sharply decrease. 

The curve of t(p, Q) is plotted in Fig. 2. The case of p,Q < 1 is of no interest, because then t < 0 and 
P, < 0, which indicates rupture of the chain before application of an extending force. In turn, the inequality 
p,Q > 2 means that both bonds of the free atom are "stronger" than the bonds of atoms of the constrained 
parts of the chain for which p, = 2; this case is excluded by the statement of the problem. Only the part of 
the graph shown by the solid curve, which corresponds to the intercept 1 ~ p,Q ~< 2, has a real meaning. This 
case is interesting from the standpoint of the decrease in critical forces and only this case will be considered 
below. 

Note that the tensile strength of the chain can decrease considerably. Thus, t < 0.2 for 1 <~ p,Q < 1.056; 
t < 0.1 for 1 ~< p,Q < 1.026, and even t < 0.01 for 1 ~< p,Q < 1.0025. Being situated at the tip of a brittle 
crack, this chain can cause crack propagation under loads that are 1-2 orders of magnitude smaller than the 
theoretical material strength. As will be shown, p,Q and, hence, t are determined from relations (2.3)-(2.5) 
between the parameters of the potential functions. The body of data on the parameters of Morse's potential 
function of the atomic interaction in two-component systems are rather limited. Table 1 summarizes the 
parameters of Morse's potential functions calculated for Cu3Au and Ni3Fe alloys [4] and for GdA1, GdCu, 
and Fe3A1 alloys [10], i.e., for ten M - Q  pairs. These data were used in the calculations for each model case. 

3. Cha in  E x t e n s i o n  w i th  a Free  I m p u r i t y  A t o m .  We now consider the problem of the stability 
of an atomic chain under extension. In this case, the free atom 0 is a Q-type impurity atom. The asymmetric 
equilibrium position of this atom is shown by either hatching or filling in Fig. 3. Thus, we have a ( -1 ) -0 -1  
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triatomic chain that consists of two M-Q bonds inserted in the "middle" of an infinite chain of M-M bonds. 
We determine the portion V0 of the total potential energy of atomic interaction that falls on the "zero" atom 

V0 ~ ~ ( r - l , 0 ,  d) -- VMQ(r-l,O) + VMQ(2d - r-l,0). (3.1) 

Introducing dimensionless variables r and ~ [see (2.8)], 

r = exp(c~uQ(r-:,0 -- rMQ)), A = exp(c~MQ(d - rMQ)), (3.2) 

we completely extend the solution for e ~ 0 from [7] to the given case by replacing D by DMQ, x by (, 
and y by A. The results obtained are quite similar to those in [7]. As A increases from the initial value A0 
[see formula (3.4)], which corresponds to the absence of external action on the chain P = 0, the impurity 
atom 0 is in a stable equilibrium state, which is symmetric to the nearest neighbors - 1  and 1. This holds 
up to ~ = )~B = 2, inclusively. The value of ~B corresponds to the branch point B(kB, AB) of the basic 
equilibrium trajectory {~ = )~} of atom 0 in space Or As the critical value )~B = 2 is exceeded, the impurity 
atom 0 occupms one of two stable asymmetric (relative to its neighbors) positions, which are characterized 
by the relation r _ A2r + A2 = 0. These secondary positions of the impurity atom can be shown to be 
mutually symmetric about the center of symmetry of the ( -1) -0-1  triatomic chain. One of the ( -1) -0  and 
0-1 bonds has a supercritical length for M-Q interaction, which is identical to its rupture. The pattern of 
equilibrium states of the chain in space O~p is the same as in the "ideal" case [7] and is given in Fig. 4, 
in which curves I and II describe the basic and secondary equilibrium trajectories, and B is the branch 
point. In the interaction of only the nearest neighbors, the critical value is ~. = AB = 2 and the force is 
P. = P(A.) = PB. To determine P. and t (2.9), we express the variable p from (2.8) in terms of the variable 
~. We have ~ = exp(aMQ(d -- rMQ)) = (exp(a(d - re)) e x p ( - ~ ( r  MO - re)))" = (p/~)', i.e., 

p = m~ 1/~, (3.3) 

where # and ~e are given by (2.4) and (2.5). Since the initial value is p = p0 = 1, we have 

= = = exp(-Mq( e - -  ( 3 . 4 )  

i.e., the initial length of the bond is do = re. 
If we express the variable ~ in (2.8) in terms of ~, we can construct a diagram for the equilibrium 

states of the chain in space O~p and compare it with the diagram for the "ideal" case. As follows from Fig. 5 
(curve 1 is an "ideal" chain and curve 2 is a chain with a free impurity atom Q), this pattern does not change 
quantitatively with impurity introduction. However, branching of the basic equilibrium trajectory I occurs at 
point BQ, when, by virtue of (3.3), 

p ?  = = ( 3 . 5 )  
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TABLE 2 

i Q 

Au Cu 
Gd Cu 
Gd A1 

p? 
1.793 
1.445 
1.446 

t 

0.987 
0.8528 
0.8535 

Substituting (3.5) into (2.9), we obtain the dependence of t on two quantities: ~ and m. The former 
means that the possibility of decreasing the level of critical forces is influenced by the shape of the curve of 
the potential function, which is determined by the quantity a. The possibility is the greater, the steeper the 
walls of the potential "hole" of the M - Q  impurity bond [function (2.2)]. The second quantity represents the 
influence of the dimensional factor (1.1). The shorter the equilibrium length r MQ of the M - Q  bond compared 
with re, the more this bond is deformed in the chain and the smaller the effort required for its rupture. P, 
and t decrease if the joint action of these factors leads to a decrease in the critical length of the M-Q bond, 

r MQ = r  MQ + (~IQ ln2, (3.6) 

compared with rm. Note that the quantity k is does not enter into formula (3.5) and, hence, the relation 
between the depths of the potential "holes" on curves of VMQ and v is of no importance. Thus, in our case, 
the influence of the energy factor on chain rupture is generally limited. 

Two limiting cases can occur where p.Q = 2 and t = 1 and where p,Q = 1 and t = 0. In the former 
case, ae = 21-1/a and in the latter, ~e = 2 -1/a. These dependences are plotted in Fig. 6. It is readily seen 
that values 0 < t < 1, i.e., a decrease in the tensile strength of the triatomic chain with a central impurity 
atom, correspond to points (~, ~e) in region F. In this case, if the point (#, ~e) E F is closer to the curve of 
~e = 2 - l / a ,  the value of t is smaller. In Fig. 6, (1) is a point of the region that corresponds to a Cu impurity 
in Au, (2) corresponds to a Cu impurity in Gd, and (3), to an A1 impurity in Gd. Calculations using the data 
from Table 1 show that a decrease in the critical force for three M - Q  pairs. The calculated results are given 
in Table 2. 

4. E x t e n s i o n  of  a T r i a t o m i c  C h a i n  wi th  an E n d  I m p u r i t y  A t o m .  Let one of the two nearest 
neighbors of the free atom of the chain'be an impurity atom and be located at, e.g., site 1 (in Fig. 7, it is 
darkened). Thus, the ( -1 ) -0 -1  triatomic part of the chain is of the form M - M - Q  and the energy of the 
"zeroth" atom is 

V0 --- V0(r-l.0; d) = v(r-l,0) + VMo(2d - r-l,0). (4.1) 
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Transforming to the variables ~ and p using formulas (2.8), we have V0 -~ Vo(~, p) and, hence, 

v0 = ~-3 - ~ + k - 2k (4.2) \ p4 / k p2/ �9 

Thus, the equilibrium equation for the "zeroth" atom avo/a~ = o is equivalent to the equation 

({ -- 1)p 4g --  k~tze /~ / t+2p 2g "4- k # z e 2 / ~  2/~+2 = 0 (4.3) 

(the parameters k, ~t, and ze are considered fixed). 
Finding solutions of equilibrium equation (4.2) and their s tudy using analytical methods is a much 

more complex problem than in the case of an "ideal" chain. Thus, in the general case, it is impossible to write 
a solution of Eq. (4.3) in the form ~ = ~(p). We solve this equation for p: 

=(k#ag"{~'+2(1 (1 4(~--1) '~ 1/2) p(1),(2) \ - ~ C 7 )  :t= k ~  2 / ~,~/2~,. (4.4) 

Here the plus sign refers to P(2)- The real solutions of Eq. (4.4) exhibit the property that  

p(1)(O ~ p(~)(O (4.5) 

for a given ~ and exist on the condition that  kg~ 2 - 4~ + 4 >/0. We introduce the notation 

= k~t. (4.6) 

Obviously, the quanti ty ~o is positive [see expressions (2.3) and (2.4) reflecting the influence of the energy 
factor]. We rewrite the latter inequality as 

cp~ 2 - 4~ + 4 ~> 0. (4.7) 

Its solution depends on ~. For ~a > 1, inequality (4.7) is rigorous and holds for all ~, so that  inequality (4.5) 
is also rigorous. 

Before considering the case of 0 < ~ ~< 1, we must so}re the equation 

~ 2  _ 4~ + 4 = O. (4.8) 

It can be solved in real numbers for ~o ~< 1. Its roots are 

. 2 k/1 ~a), (4.9) 6 , ~ =  ~(i+ - 

where the plus sign refers to ~ .  For r = 1, the roots coincide, i.e., ~ = ~ = 2. Thus, for 0 < ~ ~< 1, condition 
(4.7) is satisfied and solutions (4.4) hold for either ~ ~< ~ or ~/> ~ .  In this case, PO)(~) = P(2)(~) if and only 
if ~ = ~',2- 
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Equations (4.4) relate the chain extension parameter  p to the configuration parameter ~ for the 
equilibrium states of the chain. These relations are shown schematically by curves in plane O~p. Each point 
corresponds to a definite equilibrium state. Figure 8 shows the characteristic position of these curves for ~ > 1, 

= 1, and ~o < 1 for the same constant  value of ae (curves I-III) .  
The influence of changes in the parameters k, ~t, and ze on the shape of curves (4.4) can be seen in 

Figs. 9-11, in which curves 3 are the equilibrium trajectories in the "ideal" case for k = # = ae = 1. In Fig. 9, 
curves 1 and 2 correspond to k = 1.1 and 0.9 for ze = 1, ~ = 0.855 and 1.125. Curves 1 and 2 in Fig. 10 
correspond to # = 1.25 and 0.9 for ze = 1, ~ = 0.81 and 1.2. In Fig. 11, curves 1 and 2 correspond to ze = 0.75 
and 1.25 for # = 1, ~ = 0.8 and 1.2. 

Since the solutions of (4.4) have the form p = p(~), it is impossible to s tudy the entire behavior of the 
chain under extension, i.e., to determine p from ~. Thus, we shall examine only some characteristic equilibrium 
states of the chain and try to describe qualitatively the changes in the chain under extension. 

First,  we consider the initial equilibrium state of the chain (point H in Fig. 8) for P = 0, p = p0 = 1, 
and d = do = re. Subst i tut ing p = 1 into Eq. (4.3) and taking into account (4.6), we obtain an equation for 
the corresponding value of ~0: 

~ 2 ~ 0 2 , + 2  _ ~ , + 2  + ~0 - 1 = 0. (4.10) 

We write Eq. (4.10) as ~M*~0g+2(~0 ~ - 1) + (~0 - 1) = 0 and assume that  ze < 1. Obviously, ~0 > 1; otherwise 
the left-hand side of the equality would have been negative. Therefore, we have zeg~ - 1 < 0, i.e., ~0 < 1/~e. 
Hence, 

1 < ~ 0 < 1 / 2  at ~ < 1 .  (4.11) 

Similarly, 

1 / ~  < ~0 < I at ~ > 1; (4.12) 

~ 0 = i  at ~ e = l .  (4.13) 

Thus,  for a zero dimensional factor (a~ ~ i) ,  the ( - I ) - 0  and 0-I  bonds are deformed even in the initial 
state. For the given k, #, and ze, the lengths of these bonds are determined via ~0. In particular, both bonds 
are extended for ~e < 1. 

We now determine the values of ~ and p in the critical states of each of the ( - 1 ) - 0  and 0-1 bonds. 
According to (3.6), the critical length of the 0-1 impuri ty  bond is 

~,, = ~ Q  + 1n---3-2. (4.14) 
OtMQ 
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If we denote [cf. (3.2)] 
r = exp( Mo(m - (4.15) 

r~, l corresponds to (.  = 2. Using Eqs. (2.4), (2.7), and (2.8), we determine the relation between the parameters 

p, (, and (: p2 = ~l/~ee~. (4.16) 

Substituting (, = 2 into this formula, we obtain 

pQ = (4.17) 

Here ~* corresponds to (,  = 2 in an equilibrium state of the chain. To find ~*, we substitute (4.17) into 
Eq. (4.3) and exclude p. After simplification we obtain qo(~*)2 _ 4~* + 4 = 0. This means that ~* is a root of 
Eq. (4.8) that exists only for ~ ~< 1 [see (4.9)]. 

Thus, there are not more than two equilibrium states of the chain with critical length (4.14) of the 0-1 
impurity bond, provided that 0 < ~ ~< 1. The values of p,Q are determined by substituting (4.9) into (4.17). 

The following two cases are possible. 
(1) If ~ = 1, then ~{ = ~ = 2, and the critical states studied coincide (the intersection point C of 

curves II in Fig. 8). In state C of the chain, the ( -1) -0  bond is also extended to the critical length 

r*_l, 0 = r ,  + a -1 ln2. (4.18) 

At point C, 
pO.[c = (2*+l/•ae) 1/2. (4.19) 

This case is similar to the case in Section 3. The critical force P, for the impurity-containing chain is smaller 
than that for the "ideal" chain if 1 <~ p.O < 2. This inequality, together with (4.19), is used to determine a set 
of pairs of the parameters/~ and ae for which the tensile strength of the chain decreases in the presence of an 
impurity. This set corresponds to points of region F in Fig. 12 (q0 = 1). 

(2) If 0 < ~ < 1, it can be easily shown that 

1 < {; < 2 < {~. (4.20) 

Indeed, let us assume the opposite, e.g., ~* > 2. Then, I - ~o i> lx/i--~- ~, which is impossible for 0 < q0 < I. 
Similarly, we prove (by contradiction) the remaining parts of the inequality. For 0 < qo < 1, there are two 
different equilibrium states of the chain in which the 0-1 impurity bond is extended to the critical length 
(4.14). In Fig. 8, these are designated by C3 and 6'4. These points are the "sewing" points of the branches 
of curves (4.4), because for ~ = ~{,2 inequality (4.5) becomes an equality. The values of p.Q at these points 

are found by substituting (4.9) into (4.17). Note that pQ(~{) < pQ(~) by virtue of (4.20), and, hence, for 
quasistatic extension of the chain with a gradually increasing force P and length d, state Ca is reached first at 
p = pQ(~).  The point that characterizes the chain moves therewith from the initial state H to Ca along the 
left equilibrium trzjectory III in Fig. 8. Since relations (4.2)-(4.4) are rather complex, the changes in chain 
configuration with passage through point Ca can be examined only qualitatively. The graph shows [allowing 
for condition (4.7) and inequality (4.20)] that at point C3 the quantity ~ reaches the largest value ( ~  < 2) on 
the "left" branch, and, hence, the largest length r-l,0 of the ( -1 ) -0  bond is shorter than the critical length 
(4.18). Further quasistatic extension [p > pQ(~)] leads to a decrease in ~ and an increase in (. 

Since ~ is a limited quantity, according to (4.16), ff ~ oo as p ---, oc. This implies that r-l,0 ~ oc, i.e., 
the 0-1 impurity bond is broken. To prove a decrease in ~, we express ~ in terms of p and ~ using formula 
(4.16) in the form 

= r (4.21) 

and substitute the result into Eq. (4.3). We obtain a representation of p2 via ~': 

p2_ ~ 2+l/~'ae (1 q= (1 4 ~ ( ( -  2~p((--1) ~2 1)/1/2/" '~ '~ (4.22) 
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Formulas (4.21) and (4.22) are used to determine the relation between ~ and ( at points of the equilibrium 
trajectory for 0 < ~o < 1, i.e., along curves III in Fig. 8. In particular, at points of the upper part of the "left" 
trajectories [i.e., for p > P~(r we have 

Passing to the limit ~ --* ~ in the latter equality, we obtain ~ --+ 1 + 0. Thus, r-l ,0 -* re. 
For T > 1, as was mentioned above, no equilibrium states of the chain with the critical length of the 

0-1 bond exist. To clarify the behavior of the chain, we consider the behavior of the chain under ( -1 ) -0  bond 
extension. Its critical length is given by formula (4.18) and is reached for ~ = ~, -= 2. A comparison of these 
values of ~ with condition (4.7) shows that the equilibrium states of the chain with the critical length of the 
(-1)--0 bond are possible only for T/> 1. 

We assume that ~0 > 1 (the case of ~ = 1 was considered above [point C in Fig. 8)]. Let ~* be a value 
of the parameter ~ that corresponds to ~. = 2 in an equilibrium state. The relation between p, ~, and ( [see 
(4.16)] for ~ = ~. = 2 yields 

p,Q = (2~(r I/2. (4.23) 

Substituting (4.23) and ~ = 2 into Eq. (4.3), we obtain 

((,)2 _ 4~(* % 4~r ---- O, (4.24) 

and find two values of ~* 

which can exist in real numbers only for T >t 1. The plus sign corresponds to ~ .  Thus, we obtained another 
proof that for T < 1 there are no equilibrium states of the chain with the critical length of the ( -1 ) -0  bond. 

We now consider other corollaries of formula (4.25). Employing arguments used to prove inequality 
(4.20), we have 

1 < Ct < 2 < ~';, (4.26) 

i.e., for ~o > 1 there are two different equilibrium states of the chain in which the ( -1 ) -0  bond is extended to 
the critical length (4.18). In Fig. 8, these states are designated by C1 and C2, respectively. The value of p.O 

at these points is determined by substituting (4.25) into (4.26). In this case, p.O((~) < p.Q ((~) by virtue of 
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(4.26), and, hence, in the quasistatic extension of the chain, state CI is the first to be at tained at p = p.O({'~). 
Figure 8 shows that  the point that  characterizes the chain moves from the initial point H to CI along the 
"lower" of two equilibrium trajectories I, which is determined by P0)(~) in (4.4). 

To s tudy the supercritical behavior of the chain, we find a representation of ~ via ~ at points of the 
"lower" trajectory and exclude p from (4.16) by means of (4.4). We obtain an expression similar to (4.23): 

~~ ( 1 - ( 1  4 ( ~ =  1)'~ 1'2 ) 
- 2(~-- 1) V~ 2 / . (4.27) 

It can be readily shown that  for ~o > 1 the value of r in (4.27) always exceeds unity. A test of function (4.27) 
for monotony and ext remum shows that,  with increasing ~, r increases to the largest value r < 2 at the 
critical point C1 on the "lower" trajectory. Then it decreases so that  r ~ 1 + 0 as ~ ---* oo. Thus, within 
the entire range of ~ variations along the "lower" trajectory the quantity ( is limited. Relation (4.16) shows 
that  p and ~ tend to infinity. Thus, for ~0 > 1, the ( - 1 ) - 0  bond is broken; its length r-l ,0 ~ oo as p ~ oo, 
while the 0-1 impuri ty bond, without reaching the critical length (4.14), begins to reduce so that r0,1 ~ r Mo 
as p ---~ oo. 

Note that  the above consideration of the behavior of the chain is valid under the assumption that there 
is no possibility of overcoming the energy barrier separating the stable equilibrium states of the chain. Chain 
equilibrium stability along both the "left" equilibrium trajectory III and the "lower" trajectory I is proved 
by studying the signs of the second derivative 02Vo/O~ 9 along these branches. 

We consider the decrease in the tensile strength of the chain under the action of an impurity. The 
critical value p.Q is determined by the dimensionless positive parameters qo, #, and m for 0 < qo < 1 from 
formulas (4.17) and (4.9), 

= = - ~/1 - ~o)) ; 

for qo > 1, from formulas (4.23) and (4.25), 

( (( pQ = P[C3 = 21+I//~m ~ 1-- ) ; 

(4.28) 

(4.29) 

and for q0 = 1, from formula (4.19). The latter case can be added to one of the above. 
The physical meaning of the parameter ~o is 

---- k~ - DMQOtMQ -- P~mQ,'" 
D a p,., 

i.e., ~o is the measure of the ratio of the theoretical tensile strengths of the atomic M - Q  and M - M  bonds. 
Thus, the point of rupture of the chain in the model studied is determined mainly by the energy factor, 
i.e., by the ratio of bond strengths. The weaker bond is broken (an obvious result at first glance). However, 
the absence of an effect of the dimensional factor is interesting. This is apparently due to the constraint on 
the atoms in the model ("triatomic chain with one free atom"). The effect of both factors (dimensional and 
energy) on chain strength is manifested quantitatively in the value of p.Q. It was shown in Section 2 that the 
chain strength decreases in the presence of an impurity if 1 ~< p,Q < 2, where p.Q is calculated from formulas 
(4.28) and (4.29) according to ~o. The data in Table 1 show that,  in seven of ten M - Q  pairs, the strength P, 
of a chain consisting of atoms of type M with impurity Q is smaller than the s t rength p. of an "ideal" M 
chain. For three pairs, a decrease in strength is also observed in the problem of Section 3. 

The calculation results are given in Table 3. The absence of a dependence of the results on each of the 
quantities k, #, m, and qo (and also of ~0, rm, and r Mo) is of interest. Thus, in two of the above-mentioned 
seven cases, m exceeds unity and in five cases it is smaller. In four cases, qo exceeds unity, while in three other 
cases it is smaller. Moreover, no regularity is observed in the joint influence of two quantities, e.g., q0 and m, 
or k and m. 

The above analysis suggests that  all factors that can have an effect on strength should be taken into 
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TABLE 3 

U Q 

Gd Cu 
Gd Al 
AI Fe 
Cu Au 
Au Cu 
Ni Fe 
Fe Ni 

k 

1.027 
1.124 
1.361 
1.077 
0.859 
0.856 
0.887 

# 

1.016 
1.062 
0.924 
1.026 
0.937 
1.039 
0.749 

0.731 
0.753 
0.977 
1.176 
0.856 
1.050 
0.884 

1.044 
1.193 
1.258 
1.104 
0.805 
0.889 
0.665 

p? 
1.551 
1.450 
1.661 
1.887 
1.578 
1.751 
1.680 

0.916 
0.856 
0.958 
0.996 
0.928 
0.980 
0.964 

account within the framework of the model. Ignoring one of the factors [see (2.3)-(2.5)] can change the 
result significantly. Of course, as the number of parameters increases, the solution of the problem becomes 
complicated. Sometimes, the problem can be solved by analytical methods. 

5. Conclus ions .  Using a one-dimensional model of brittle fracture as an example, we showed the 
possibility of strength reduction of solids whose atomic lattice contains impurities. The reduction can reach 
one or two orders of magnitude and is determined by differences in atomic interaction. Under the model 
conditions, the strength decrease can be calculated from the resulting formulas using numerical values of the 
parameters of the potential interaction function. 

A decrease in the tensile strength of an atomic chain with an impurity located at the tip of a brittle 
crack [7-9] can decrease sharply the local resistance to fracture and lead to crack propagation under loads 
that are substantially smaller than the strength of the materials containing no impurities. 

This work was supported by the Russian Foundation for Fundamental Research (Grant 95-01-00870). 
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